铁律1:
函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
铁律2:
函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
铁律3
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……
铁律4
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
铁律5
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
铁律6:
选择与填空中出现不等式的题目,优选特殊值法。
铁律7
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
铁律8
恒成立问题或是它的反面,可以转化为值问题,注意二次函数的应用,灵活使用闭区间上的值,分类讨论的思想,分类讨论应该不重复不遗漏。
铁律9
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。
铁律10
三角函数求周期、单调区间或是值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。
高中学生在理科学习上遇到困难时,是否必须转文科并没有绝对的答案,这取决于个人的学习能力、兴趣、职业规划以及对新学科的适应能力。以下是一些考虑因素:
学习难度与兴趣:如果你对理科感到听不懂且考试难以得分,而对文科有更强的兴趣和理解能力,那么转文科可能是一个合适的选择12。
未来职业规划:如果你的职业目标与物理学科无关,或者你更倾向于从事与文科相关的职业,那么转文科可能更适合你的职业规划3。
学科特点与适应能力:理科注重思维技巧,而文科注重人文素养。转文科意味着你需要学习新的知识领域,并且文科也需要集思广益和逻辑分析能力。你需要评估自己是否能够适应这种不同的学习逻辑2。
综合考虑:转文科可以为学生提供更多选择,但也需要考虑新学科的适应能力和未来的挑战。转文科的决定应该基于全面的思考和咨询,包括与老师、家长和学业指导员的交流,以及参加文科课程或活动来了解自己是否适合3。
总之,如果你在理科学习上遇到困难,转文科是一个可以考虑的选项,但你应该仔细考虑上述因素,并做出最适合自己的决定
指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b))
(8)指数函数无界。
(9)指数函数是非奇非偶函数
(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。以下整数指数幂运算公式学生应该很熟悉了,初中数学就学过,很简单,属于基本运算公式。假设各字母的取值在下列表达式均有意义的条件下:
a0=1
a-n=1/an
am*an=am+n
(am)n=amn
(ab)m=am*bm
当n为任意正整数时,有
当n为奇数时,有
当n为偶数时,有
定义:形如y=ax(a>0&a≠1)的函数叫做指数函数,其中x是自变量,函数的定义域为R,值域为y>0。